The possibilities of the application of algal biomass in the agriculture

Katarzyna CHOJNACKA, Agnieszka SAEID, Izabela MICHALAK – Department of Chemistry, Wrocław University of Technology, Wrocław, Poland

The use of algal biomass, which is a renewable source of many valuable active substances with a wide range of applications in agriculture, includes sustainable agriculture and manufacturing and meets both economic and ecological objectives, considered as a protection against contamination and risks from agricultural activities.

The size of the productivity of microalgal biomass is determined now as 5 thousand tons per year (dry weight), which gives the market value of $500MM [1, 2]. Because of these nutrients and the values of feeds, microalgae can be incorporated into the diets of various animals, fish, domestic animals and in animal breeding [3, 4, 5].

The use of algae as feed materials for animals is more common than their use in the human diet. A large number of nutritional and toxicological evaluations showed the algae biomass can be used as a valuable feed supplement, which can successfully replace conventional sources of protein (soy, fish meal, rice bran, etc.) [6]. Seaweeds are also a source of dietary minerals such as sodium, potassium, iodine as well as fibre. Another potential area, where the use of seaweeds becomes important, is their supplementation in order to improve the texture of foods.

Micro- and macroalgae

The algae can be divided into two groups: microalgae and macroalgae (seaweed). They differ in nutritional value and methods of collection. Figure 1 shows the differences between them.

Algae in animal nutrition

In Europe, seaweeds have been used as animal feed since Roman times. In Iceland, France and Norway pets were fed by algae in order to increase the nutritional value of feed [9, 10]. In 2004, the use of algae as animal feed accounted for 1% of the global industry based on seaweed ($10MM in the U.S., mainly Ascophyllum nodosum) [11]. In the case of microalgae used as feed additives, the value of industry in the same year in the U.S. totalled $300MM [12]. There are about ten thousand identified species of algae and about 5% is used as food for humans or animals.

Polish Minister of Agriculture and Rural Development authorizes the use of algae as a feed material [13]. In the list of feed materials, which have been authorized under the provisions of the European Union, algae were listed as feed material [14].

The literature describes the nutritional characteristics of algae, taking into account their use in the nutrition of marine animals, such as: oysters, fish (e.g., bream – a species of fish, which have been classified into families of finfish) [3+5, 15+17]. In the feeding of farm animals, the main target is the poultry, mainly because of the dose of algae in the diet of poultry, which is the most promising prospect for their commercial application. Another growing market is the use of algae in aquaculture. It is estimated that about 30% of current world production of algae is sold as feed material. In Table 1, nutritional experiments using macro-and microalgae as feed additives were listed.

Algae can serve as source of many nutrients functions. In addition, it is known that the different families of marine algae produce a variety of secondary metabolites, which form the basis for the defence against many herbivores. Hardt et al. (1996) presented the results of research on the deterrent properties produced by Dictyota acutiloba designed to scare the fish from tropical and temperate zones [47].

The work of Sheih et al. (2009) showed that low-cost algal waste protein can be a new alternative for the production of peptides with antioxidant properties. Waste protein from algae is usually used as animal feed, a by-product in the production of extracts from microalgae Chlorella vulgaris. Algal waste protein can be subjected to the hydrolysis using for example pepsin. Post-extraction residues, which contain over 50% protein, have a low commercial value, but still can be a valuable source of protein in animal feed. The study indicated that the waste from algae could become a new source of antioxidants [48].

It was shown that two products rich in polyunsaturated fatty acids ω–3 (type Aquagrow-DHA and the type of TV-20 C. cohnii) derived from edible seaweed, have inhibitory effects on methane production by ruminants. It has long been known that the production of methane (CH₄) by ruminants decreases the energy efficiency of production of milk and beef. In addition, the recent increased interest in reducing methane production by ruminants is one of the strategies to reduce greenhouse gas emissions [49].

Macroalgae are a source of polyphenolic compounds that have well documented antioxidant and antibacterial properties. This is used as food additives to prevent unwanted spoilage of meat products.

Table 1

<table>
<thead>
<tr>
<th>ALGAE</th>
<th>MICROALGAE</th>
<th>MACROALGAE (kayazes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUKARYOTES</td>
<td>PROKARYOTES</td>
<td>CHLOROPHYTATES BROWN ALGAE</td>
</tr>
<tr>
<td>• Harvesting from the sea</td>
<td>• Cultivation</td>
<td>• Culture at sea</td>
</tr>
<tr>
<td>• Culture in natural waters</td>
<td>• For bio-reactors</td>
<td>• Ponds</td>
</tr>
</tbody>
</table>

Fig. 1. Division of algae in two groups: microalgae and macroalgae [7, 8]

Biomass production methods

Composition

- Poly saccharides
- Proteins
- Polyunsaturated fatty acids
- Lipids
- Chlorophyll
- Carotenoids
- Phycoerythrin
- Polyphenols
- Minerals
- Stimulators of plant growth:
 - Eutolinos

- Poly saccharides
- Proteins
- Polyunsaturated fatty acids
- Lipids
- Chlorophyll
- Carotenoids
- Phycoerythrin
- Polyphenols
- Minerals
- Stimulators of plant growth:
 - Eutolinos

Algae in production

- Poly saccharides
- Proteins
- Polyunsaturated fatty acids
- Lipids
- Chlorophyll
- Carotenoids
- Phycoerythrin
- Polyphenols
- Minerals
- Stimulators of plant growth:
 - Eutolinos

Table 1.
The application of algae in animal feeding (M – Microalgae, Macroalgae: G – Green, B – Brown, R – Red)

<table>
<thead>
<tr>
<th>Alga</th>
<th>Active substance</th>
<th>Animal</th>
<th>Dose</th>
<th>Effect</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizochytrium sp. (M)</td>
<td>Docosahexaenoic acid (DHA)</td>
<td>Pigs</td>
<td>0.25%–0.5 %</td>
<td>A significant increase of DHA.</td>
<td>(18)</td>
</tr>
<tr>
<td>Hematococcus pluvialis (M)</td>
<td>Astaxanthin</td>
<td>Broilers</td>
<td>0.350, 1 800 and 8 950 mg/kg</td>
<td>Antibacterial activity of astaxanthin to Clostridium perfingens.</td>
<td>(19)</td>
</tr>
<tr>
<td>Chlorella sp. (M)</td>
<td>Protein</td>
<td>The chicks and broilers</td>
<td>6% and 15%</td>
<td>Addition of algae had no adverse effect on the biomass growth.</td>
<td>(20)</td>
</tr>
<tr>
<td>Nannochloropsis oculata (M)</td>
<td>Fatty acids and carotenoids</td>
<td>Laying hens</td>
<td>20%</td>
<td>Addition of microalgae increased content of unsaturated fatty acids and carotenoids in the egg yolks.</td>
<td>(21)</td>
</tr>
<tr>
<td>Cryptothecodinum cohnii (M)</td>
<td>Biomass</td>
<td>Ducks (Cairina moschata domestica L.)</td>
<td>0.5%</td>
<td>Addition of microalgae did not affect the weight gain and manure characteristics as well as chemical composition, color, pH, shelf life, the aromatic characteristics of breast muscle.</td>
<td>(22)</td>
</tr>
<tr>
<td>Spirulina platensis (M)</td>
<td>Biomass</td>
<td>Broilers</td>
<td>14 and 17%</td>
<td>Addition of microalgae did not affect the mass, composition and histopathology of organs. Meat quality did not change. More intense color was observed.</td>
<td>(23)</td>
</tr>
<tr>
<td>Chlorella sp. (M)</td>
<td>Biomass</td>
<td>Laying hens</td>
<td>12%</td>
<td>Addition of 120 g of microalgae/kg of feed did not affect the quality of eggs and feed utilization. High concentrations of algae in the feed caused a more intense yellow color of egg yolks.</td>
<td>(24)</td>
</tr>
<tr>
<td>Schizochytrium sp. (M)</td>
<td>Fatty acids</td>
<td>Laying hens</td>
<td>2%</td>
<td>Algae as a source of n-3 PUFAs administered for 8 weeks had no adverse effect on the organoleptic properties.</td>
<td>(25)</td>
</tr>
<tr>
<td>Laminaria digitata (B), Laminaria hyperborea (B), Enteromorpha intestinalis (G)</td>
<td>Biomass</td>
<td>Sheep</td>
<td>3–5 kg of fresh biomass per day (WM)</td>
<td>The sheep grew up very well, therefore macroalgae may be used as an alternative source of food.</td>
<td>(26)</td>
</tr>
<tr>
<td>Ulva lactuca (G)</td>
<td>Biomass</td>
<td>Goat</td>
<td>NR (Not Reported)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroalgae (the species were not indicated)</td>
<td>Biomass</td>
<td>Ruminants</td>
<td>20% DM</td>
<td>Ulva as a low-energy and rich in nitrogen macroalgae, may be a component of the feed, consisting of cereals, which are high-energy material with the low content of nitrogen.</td>
<td>(27)</td>
</tr>
<tr>
<td>Ulva lactuca (G)</td>
<td>Biomass</td>
<td>Piglets</td>
<td>0.12 and 0.19% DM</td>
<td>The bioavailability of iodine from macroalgae and KI (added in the same amount) was compared. There was a significant increase in iodine content in the organs (muscle, liver, kidney, heart) when macroalgae was added to the feed. Organic form proved to be more digestible for pigs than inorganic forms.</td>
<td>(28)</td>
</tr>
<tr>
<td>Laminaria digitata (B)</td>
<td>Biomass</td>
<td>Poultry</td>
<td>7.5%</td>
<td>Nutritional value of food by checking the digestibility of organic matter in vitro experiments and the decomposition of organic matter and crude protein in ruminus by in sacco experiment. In the rumen, 85% of organic matter was decomposed. The macroalgal energy content (10.2 MJ/kg dry mass – DM) is comparable to the energy value of medium–quality hay.</td>
<td>(29)</td>
</tr>
<tr>
<td>Fucus serratus (B), Fucus esiculosus (B)</td>
<td>Biomass</td>
<td>Laying hens</td>
<td>10% DM</td>
<td>Addition of algae had no effect on egg production, feed intake, egg weight and thickness of egg shells. Cholesterol content of eggs in the experimental group was 5% lower than in the control group.</td>
<td>(30)</td>
</tr>
<tr>
<td>Enteromorpha sp. (G)</td>
<td>Biomass</td>
<td>Poultry</td>
<td>10, 20 and 30% WM</td>
<td>The best results were noted in the group with addition of 10% of algae, where the largest increase in body mass, decrease of fat content, increase of protein content in the blood and liver was observed when compared to control group.</td>
<td>(31)</td>
</tr>
<tr>
<td>Ulva rigida (G)</td>
<td>Biomass</td>
<td>Piglets</td>
<td>10%, 20% and 30% DM</td>
<td>With the increase of macroalgae content in the feed, feed intake and growth rate decreased.</td>
<td>(32)</td>
</tr>
<tr>
<td>Enteromorpha intestinalis (G), Ulva lactuca (G), Ulva tenera (G), Caulerpa taxifolia (G), Codium fragilest (G), Codium tomentosum (G), Holmeda tuna (G), Bryopsis pinnata (G), Caulerpa scalpelliformis (G)</td>
<td>Biomass</td>
<td>Poultry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva sp. (G), Hypnea charoides (R), Colpomenia sinuosa (B), Sargassum hemiphyllum (B)</td>
<td>Biomass</td>
<td>Rats</td>
<td>5% DM</td>
<td>Macroalgae have no negative impact on growth of rats – body weight and organs, except of C. sinuosa, which influenced significantly to the mass of the kidney. Moreover, in rats fed with algae, increase in high-density lipoprotein (HDL) and triglycerides was observed. Ulva sp. and H. charoides reduced the total cholesterol level.</td>
<td>(33)</td>
</tr>
<tr>
<td>Porphyra tenera (R), Undaria pinnatifida (B)</td>
<td>Biomass</td>
<td>Rats</td>
<td>15% DM</td>
<td>Undaria influenced significantly the growth of the rats. Macroalgae can also provide a rich source of dietary fiber and minerals.</td>
<td>(34)</td>
</tr>
</tbody>
</table>

Table 1
Algae as fertilizers

In the recent years, the growing use of seaweed extracts as fertilizer in the ecological farming has been observed. Algal extracts contain plant hormones, amino acids, fatty acids and trace elements responsible for controlling plant growth and development and for improving the resistance to pathogens [50]. In the literature, there are data supporting the positive effects of algae and algal extracts on the growth of vegetables, fruits and other crops. Algal extracts are used both for conditioning seeds or as fertilizers for soil or foliar application during the growing season and flowering. They stimulate seed germination, growth and yield of different crops [51, 52, 53]. The number of treatments depends on the individual susceptibility of the crop – treatments can be performed several times during the growing season. The time between successive treatments should not be longer than 14 days [53].

The influence of algae on soil

In the ecological organic farming, it is proposed to improve the soil fertility through the fertilization with compost, which contains addition of algae. Seaweed and algal extracts also have a positive impact on the soil state by improving the soil moisture holding capacity [54] and by promoting the growth of beneficial soil microorganisms [52]. Algae very well interact with isolated from soil humic acids, which are commonly used in small doses and with high frequency (3+6 treatments) [55]. Lichner et al. (2012) studied the impact of biological soil crust consisting of three species of algae: Choricystis minor, Klebsormidium subtile and Tribonema minus on the hydrophysiological parameters of sandy soil. Higher water repellence, water holding capacity, hydraulic conductivity of the soil was observed when compared to the control soil. Additionally, biological soil crust influences on the increase of soil organic carbon and increase of water drop penetration time [56].

In a study of Haslam and Hopkins (1996) it was shown that the use of alga Laminaria digitata (cut into small pieces) caused an increase in: pore volume, aggregate stability, biomass of soil microorganisms and biological activity of sandy soil (respiration and nitrogen mineralization) [57]. Caoizzi et al. (1968) investigated the effect of seaweed on the level of phosphorus and nitrogen in calcareous soils, compared with KNO₃ and KH₂PO₄. After 21 days, an increase in phosphorus content in the soil with addition of seaweeds was observed in contrast to the soil with the addition of KH₂PO₄. This may suggest that the available phosphorus in algal biomass occurs in a different chemical state than in inorganic compounds. The form of occurrence could cause that plants less absorb it or soil microorganisms immobilize it worse. It is possible that the phosphorus present in algae forms compounds, which are hardly biodegradable by microorganisms. These compounds form soluble complexes with the major soil elements (Ca, Fe, Al), thus preventing the binding of P(V) by the soil. Decrease in nitrogen content was probably caused by the transformation to organic form by microorganisms. The phenomenon of nitrogen immobilization is supported by the presence in the soil material with a low nitrogen content, such as algae [58].

The influence of algae on plants

Algae as physioactivators

Long-term cooperation of the Goëmar company with the French research institutes (e.g. INRA – National Institute for Agricultural Research, Universities of Rennes, Bordeaux and Marseille), confirmed the positive effects of Ascophyllum nodosum extract on growth and yield of fish.
of plants. This group of products was described as physioactivators based on the PAT technology (Physio Activator™ Technology), because they stimulate plant growth and development. The mechanism of the action of physioactivators relies on their parallel effects on several processes: activation of plant mineral nutrition through stimulation of enzymes that play a key role in the uptake of nutrients and compounds responsible for abundant flowering, pollination efficiency and fruit set. Higher levels of polyamines stimulate the intensity of cell division, leading to an increase in their numbers [59]. The algal active ingredients may stimulate nitrate reductase and other plant enzymes responsible for absorbing minerals and their transformation in the plant, and thus they act as physioactivators. The immediate effect of their actions can be changing the chemical composition of plants [60].

Algae as biostimulants

Conditions for growth of plant and thus the yield can be improved through the use of various natural additives, which enrich the soil. They are manufactured on the basis of natural substances found in biological materials, such as algae, which have very strong biostimulating properties [51]. Biostimulants from algae are used primarily after germination the plants, in the form of successive spraying, although the use directly to the soil is not excluded and can also produce positive results [61]. Some natural biostimulants are listed in the “List of fertilizers and soil conditioners qualified for use in ecological farming”, approved by the Institute of Soil Science and Plant Cultivation in Puławy [62]. It includes AlgaminoPlant (15% extract of marine algae Sargassum and 10% α-amino acids).

Examples of studies conducted on plants with the use of algal extracts

In a study conducted by Dobrzański et al. (2008) it was shown that the conditioning of carrot seeds and parsley in a 0.5% solution of biostimulant AlgaminoPlant improved germination. There was also a tendency to increase the marketable yield of carrot roots and to increase the share of marketable yield in total yield due to application of fourfold after sowing, and soon after the emergence of carrots at intervals of 7–14 days (1 dm³/ha in each treatment). The tendency to reduction of nitrates and to increase the content of carotenoids was pointed out [61]. Kumar and Sahoo (2011) studied the effect of the extract prepared from the alga Sargassum wightii on the growth and yield of wheat (Triticum aestivum) using different concentrations of extracts: 5, 10, 20, 30, 40 and 50% v/v. The results obtained by Mysiatyk et al. (2010) indicated on a stimulating effect of marine algal (products: Kelpak SL – Ecklonia maxima and AlgaminoPlant – Sargassum spp.) on the germination of oilseed rape. Lower dose of algal extracts showed better performance, as compared to higher doses: for product Kelpak optimal dose was 1.5 cm³/200 cm³ H₂O, for product AlgaminoPlant – 0.5 cm³/200 cm³ H₂O [64]. Literature reports that algal extracts (Ulva sp. (35%), Codium spp. (18%) and Dictyota sp. (17%)) produced through composting, were tested in the assessment of growth rate of tomatoes, which were grown on different kind of soils: sand, sandy-loam soil and sandy-loam soil with inorganic fertilizers, to which different doses of algal compost were added. The results showed that in all cases the addition of compost increased the maximum capacity of water and plant growth. Growth of tomato (Lycopersicum esculentum var. Platense) was proportional to the dose of compost [65]. Rathore et al. (2009) studied the effect of foliar application of various concentrations of algal extract: 0, 2.5, 5, 7.5, 10, 12.5 and 15% v/v (prepared from Kappaphycus alvarezii) on nutrient uptake, growth and yield of soybean (Glycine max (L.) Merr.). Crops were conducted without the use of fertilizers. The best results were obtained when using 15% algal extract, for which the soybean yield was 57% greater than in the control group [66].

Algae in plant protection

In modern agriculture, a wide variety of chemicals is used in order to control diseases and pests. In this way, very often a big losses are prevented and on the other hand it allows for obtaining higher-quality crops. However, in ecological farming, only products based on natural substances (such as plant extracts) should be used. Their action is not as immediate, but it poses less risk to the environment. Once, in the fight against diseases and pests, extracts from plants such as: horsetail, nettle, garlic, dandelion, chamomile etc. were used [50]. Today, for the preparation of products, which will stimulate the immunity against pathogens, seaweeds can be used. One of these preparations is biostimulant Vacciplant available in several countries in European Union and in the United States. It is produced on the basis of Laminaria digitata. It stimulates defence mechanisms of plants, acting as a “vaccine”, which protects the plant against diseases. During the attack, the pathogen produces substances that damage cell walls of plants (e.g., oligoglycanes). All harmful substances produced by fungi during the attack are named – elicitors, which are the stress factors that stimulate plant defence response. Plant response to pathogen attack and activity of elicitors is the production of cells a signal to the defence, e.g., lignifications of cell walls and the production of compounds toxic to the pathogen (e.g., phytoalexins, phenolic compounds). Vacciplant thus acts as elicitor, which pretends the action of the substance produced during pathogen attack [59].

In the work of Horoszkiewicz–Janka and Jajor (2006) the effect of seed dressing on the healthiness of barley, wheat and rape in the early development stages was investigated. One of the tested products was Kelpak, which is extracted from marine algae Ecklonia maxima, collected from the coast of South Africa. This product stimulates plant growth and improves the quantity and quality of yield. The positive effect of this growth regulator is widely used in the cultivation of vines and citrus fruit, agricultural crops and ornamental plants. It was shown that the dressing of spring rape with Kelpak, caused a reduction in the percentage of infected plants by about 50% [67]. A similar biopreparation is Bioalgeen S 90 Plus 2, which is also extracted from marine algae. Its application promotes the expansion of the root system, greater resistance to stress and increase resistance to the pathogens attack. Better-developed root system improves the tolerance to stress caused by disease-causing pathogens and pests, increases yields and improves their quality [68]. In a study conducted by Horoszkiewicz-Janka and Michalski (2006) the effect of foliar application of biostimulator: Bioalgeen S 90 Plus 2 on the quality and the presence of microflora in the grain of spring barley, husked and naked oats was defined. It was shown that the application of this preparation reduced the pathogenic fungi in grain of all tested species [68]. Sultana et al. (2005) showed that the use of algae: brown: Stokeyia indicia, Padina pavonia and red: Solieria robusta as agents, which improve soil properties, had a positive effect on the reduction of root infection of okra (Abelmoschus esculentus (L.) Moench.) caused by pathogens: Macrophomina phaseolina, Rhizoctonia solani and Fusarium solani [69]. Also in the work of Ehteshamul-Haque et al. (1996) it was shown that brown algae: Stoechospermum marginatum and Sargassum tenerrimum, used as organic amendments...
under greenhouse conditions, significantly reduced the population of *Meloidogyne javanica* and fungi that cause infections of the root [70]. The literature also shows that red alga: *Solieria robusta* acts better against rot the roots of soybean (*Glycine max* (L.) Merrill.) caused by *Fusarium solani* than the fungicide – *Topsin–M* [71].

The potential application of algae

Sustainable agriculture is conducting agricultural production by environmentally friendly methods. Also algae production could be more environmentally friendly and efficient by closing production cycles, where animal wastes are used as a medium for the growth of microalgae. In this way, nutrients not used by the animal organism can be used to increase the biomass of microalgae, which can then be added to animal feed, as a natural biomass or biomass enriched with microelements [72, 73]. By introducing additional link – algae to the chain of production in agriculture, will be possible to obtain a closed cycle in which the waste from one process play role of substrates for the next one, creating a nearly self-sufficient farm. Algae ponds fed with animal waste serve as the oxidation ponds. Algae bind free nutrients into the biomass, and in this way purify water, produce oxygen, which is essential for growth of aerobic bacteria and other aquatic organisms. If the fish are breeding in those ponds, the algae provide food and create the optimal environment for fish farming. Microalgae are responsible for the biological transformation of solar energy and nutrients from the waste to the biomass of microalgae, which can undergo anaerobic fermentation giving methane (approximately 60%) and of CO₂ (about 40%), which in turn can be returned to cultivation of microalgae as a source of carbon. Literature also presents new opportunities for the use of algae in the animal nutrition. Comparing the content of microelements in conventional feed with the composition of microalgae biomass, it appears that the content of microelements in the biomass of algae after the enrichment is much higher than in barley, corn, oats, wheat, rye, potatoes and fodder yeast [19, 74]. The role of algae in modern agriculture is presented in Figure 2.

Fig. 2. The role of algae in modern agriculture

Literature describes attempts to enhance the biomass of *Spirulina platensis* in selenium and iodine [75, 76], which resulted in the receipt of pharmaceuticals, which can be used as human dietary supplements. Such formulations provide the ingredients, in more digestible form. Trend enrichment of organisms with good nutrition through biosorption and bioaccumulation is a fact which is confirmed by literature reports for example copper-enriched yeast that have solved the problem of micronutrient deficiency in the diet of humans and animals [77].

Summary

The present study describes the algae (micro- and macroalgae) as a new raw material for agriculture. That potential has not yet been fully exploited, yet.

Algae are a challenge for sustainable agriculture, known from the valuable nutrients, and used as dietary supplements. In modern agriculture can be used in animal nutrition as well as carriers of trace elements in soil fertilization. In addition, it is proposed to apply the process of biosorption as a method of binding metal ions to biomass. The introduction of mineral additives by the produced algal biomass enriched by biosorption will reduce the uncontrolled accumulation of trace elements in the environment.

It is also possible to use minerals excreted in the faeces of livestock in integrated farms where farm wastes could be used as a medium for the cultivation of microalgae.

Acknowledgements

The work was supported by Polish Ministry of Science and Higher Education – project No N R05 0014 10.

Literature

Translation into English by the Author

Katarzyna CHOJNACKA – Professor (Sc.D.), graduated from the Faculty of Chemistry, Wrocław University of Technology in 1999. She obtained her PhD degree in 2003 in the Institute of Chemical Engineering and Heating Equipment of Wrocław University of Technology. She received her Habilitation in 2008 at the Faculty of Chemistry, Wrocław University of Technology. Since 2009, she is employed as a professor at the Institute of Inorganic Technology and Mineral Fertilizers Wrocław University of Technology. In 2012, she received the title of Professor. Specialization – biological technologies.

e-mail: katarzyna.chojnacka@pwr.wroc.pl

Agneszka ŚAIED – Ph.D., (Eng), graduated from the Faculty of Chemistry, Wrocław University of Technology in 2006 (biotechnology). She obtained her PhD degree in 2010 in technical sciences; discipline of chemical technology. Since 2010 she is a scientific and teaching assistant at the Institute of Inorganic Technology and Mineral Fertilizers Wrocław University of Technology – Department of Agricultural Chemistry. Specialization – biotechnological processes.

e-mail: agneszka.said@pwr.wroc.pl

Izabela MICHALAK – Ph.D., (Eng), graduated from the Faculty of Chemistry, Wrocław University of Technology, in 2005. She obtained her PhD degree in 2010 in technical sciences; discipline of chemical technology. Since 2010 she is a scientific and teaching assistant at the Institute of Inorganic Technology and Mineral Fertilizers Wrocław University of Technology – Department of Agricultural Chemistry. Specialization – biotechnological processes.

e-mail: izabela.michalak@pwr.wroc.pl

Chemical Reactions in Foods VII
14 – 16 November 2012
Prague, Czech Republic, Europe

The scientific program will include plenary invited lectures, oral communications, poster presentations, satellite workshops, as well as young researchers platform.

The conference will be focused on the reactions of food constituents taking place in processing and storage, and their effect on the quality of products and the health of consumers.

The scientific program covers following areas:

- compounds associated with nutritional and sensory quality of foods; reactions and interactions under storage/processing conditions; reaction pathways, predictive modelling, the impact of novel technologies on physical-chemical changes; major food constituents (proteins, carbohydrates, lipids); the Maillard reaction and AGEs; flavours, texture and other quality/safety markers; minerals, vitamins and other constituents
- biologically-active constituents of foods and food raw materials: factors affecting their formation and changes during post-harvest handling; compounds, ingredients and formulations with nutritional and health benefit; toxic/anti-nutritive compounds
- strategies to improve food quality and safety: trends in food production, processing, packaging, and distribution; formation and mitigation of processing contaminants; products from organic farming; benefit/risk perception and communication in the food chain
- chemistry behind novel foods: composition, authentication, traceability of origin, stability, and shelf-life testing; nanotechnology in food processing; functional foods including prebiotics and probiotics; nutraceuticals and ingredients for food and medical uses.

Web Site: http://www.crf2012.eu/